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In this paper, we consider band structure calculations governed by the Helmholtz or
Maxwell equations in piecewise homogeneous periodic materials. Methods based on
boundary integral equations are natural in this context, since they discretize the inter-
face alone and can achieve high order accuracy in complicated geometries. In order to
handle the quasi-periodic conditions which are imposed on the unit cell, the free-space
Green’s function is typically replaced by its quasi-periodic cousin. Unfortunately, the
quasi-periodic Green’s function diverges for families of parameter values that correspond
to resonances of the empty unit cell. Here, we bypass this problem by means of a new
integral representation that relies on the free-space Green’s function alone, adding aux-
iliary layer potentials on the boundary of the unit cell itself. An important aspect of our
method is that by carefully including a few neighboring images, the densities may be
kept smooth and convergence rapid. This framework results in an integral equation of
the second kind, avoids spurious resonances, and achieves spectral accuracy. Because
of our image structure, inclusions which intersect the unit cell walls may be handled
easily and automatically. Our approach is compatible with fast-multipole acceleration,
generalizes easily to three dimensions, and avoids the complication of divergent lattice
sums.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A number of problems in wave propagation require the calculation of quasi-periodic solutions to the governing partial dif-
ferential equation in the frequency domain. For concreteness, let us consider the two-dimensional (locally isotropic) Max-
well equations in what is called TM-polarization [27,28]. In this case, the Maxwell equations reduce to a scalar Helmholtz
equation
Duðx; yÞ þx2�luðx; yÞ ¼ 0; ð1Þ
where � and l are the permittivity and permeability of the medium, respectively, and we have assumed a time dependence
of e�ixt at frequency x > 0. Given a solution u to (1), it is straightforward to verify that the corresponding electric and mag-
netic fields E,H of the form
. All rights reserved.
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Eðx; y; zÞ ¼ Eðx; yÞ ¼ ð0; 0;uðx; yÞÞ

Hðx; y; zÞ ¼ Hðx; yÞ ¼ 1
ixl
ðuyðx; yÞ;�uxðx; yÞ;0Þ
satisfy the full system
r� E ¼ ixlH
r�H ¼ �ix�E:
We are particularly concerned with doubly periodic materials whose refractive index n ¼ ffiffiffiffiffiffi
�lp is piecewise constant (Fig. 1).

Such structures are typical in solid state physics, and are of particular interest at present because of the potential utility of
photonic crystals, where the obstacles are dielectric inclusions with a periodicity on the scale of the wavelength of light [28].
Photonic crystals allow for the control of optical wave propagation in ways impossible in homogeneous media, and are find-
ing a growing range of exciting applications to optical devices, filters [21], sensors, negative-index and meta-materials [36],
and solar cells [7].

We assume that the crystal consists of a periodic array of obstacles (XK) with refractive index n – 1, embedded in a back-
ground material with refractive index n = 1 (denoted by R2 nXK). We then rewrite (1) as a system of Helmholtz equations
ðDþ n2x2Þu ¼ 0 in XK ð2Þ
ðDþx2Þu ¼ 0 in R2 nXK ð3Þ
The expression XK, above, is used to denote the closure of the domain XK (the union of the domain and its boundary @XK). In
this formulation, we must also specify conditions at the material interfaces. These are derived from the required continuity
of the tangential components of the electric and magnetic fields across @XK [27,28], yielding
u;un continuous across @XK ð4Þ
where un = @u/@n is the outward-pointing normal derivative.
The essential feature of doubly periodic microstructures in 2D (or triply periodic microstructures in 3D) is that, at each

frequency, there may exist traveling wave solutions (Bloch waves) propagating in some direction defined by a vector k.

Definition 1. Bloch waves are nontrivial solutions to (2)–(4), that are quasiperiodic, in the sense that
uðxÞ ¼ eik�x~uðxÞ; ð5Þ
where ũ is periodic with the lattice period and k = (kx, ky) is real-valued. k is referred to as the Bloch wavevector.
Bloch waves characterize the bulk optical properties at frequency x; they are analogous to plane waves for free space. If

such waves are absent for all directions k for a given x, then the material is said to have a band-gap [48]. The size of a band-
gap is the length of the frequency interval [x1,x2] in which Bloch waves are absent. Crystal structures with a large band-gap
are ‘optical insulators’ in which defects may be used as guides [28], with the potential for enabling high-speed integrated
optical computing and signal processing.

Definition 2. The band structure of a given crystal geometry is the set of parameter pairs (x, k) for which nontrivial Bloch
waves exist.
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(a) Problem geometry: an infinite dielectric crystal, in the case where the inclusion X lies within a parallelogram unit cell U. The (shaded) set of all
ns in the lattice, denoted by XK in the text, has refractive index n, while the white region has index 1. (b) Sketch of our quasi-periodizing scheme:
e use of layer potentials on the left (L) and bottom (B) walls, extended to the additional segments shown, which form a skewed ‘tic-tac-toe’ board, as
the near neighbor images of X, outlined in solid lines.
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The numerical prediction of band structure is a computationally challenging task, yet essential to the design and optimiza-
tion of practical devices. It requires characterizing the nontrivial solutions to a homogeneous system of partial differential
Eqs. (2) and (3) subject to homogeneous interface and periodicity conditions (4) and (5) in complicated geometry. Solving
this eigenvalue problem is the focus of our paper.

In the next section, we briefly review existing approaches, and in Section 3, we present and test a method that relies on
the quasi-periodic Green’s function. We introduce our new mathematical formulation in Section 4. Numerical results are
presented in Section 5, and we conclude in Section 6 with some remarks about the potential for wider application of this
approach.
2. Existing approaches

In order to pose the band structure problem as an eigenvalue problem on the unit cell U (see Fig. 1), we will require some
additional notation. The nonparallel vectors e1; e2 2 R2 define a Bravais lattice K :¼ fme1 þ ne2 : m;n 2 Zg. Given a smooth,
simply connected inclusion X � R2, we may formally define the corresponding dielectric crystal by XK:¼{X + d:d 2K}. As
indicated above, we assume that XK has refractive index n – 1, and that the background R2 nXK has refractive index 1. For
the moment, we assume that X � U as illustrated in Fig. 1. We will discuss the case of X crossing @U in Section 5.1.

The quasi-periodicity condition (5) can be rewritten as a set of boundary conditions on the unit cell U, coupling the solu-
tion on the left (L) and right (L + e1) walls, as well as on the bottom (B) and top (B + e2) walls. More precisely, if we define
a :¼ k � e1; a :¼ eia; b :¼ k � e2; b :¼ eib;
then quasi-periodicity is written
ujLþe1
¼ aujL ð6Þ

unjLþe1
¼ aunjL ð7Þ

ujBþe2
¼ bujB ð8Þ

unjBþe2
¼ bunjB; ð9Þ
where the normals have the senses shown in Fig. 1.
The homogeneous Eqs. (2)–(4), (6)–(9) define a partial differential equation (PDE) eigenvalue problem on the torus U. By

convention, the band structure or Bloch eigenvalues are generally defined as the subset of the parameter space {(x, a, b):
x > 0, �p 6 a < p, �p 6 b < p} for which nontrivial solutions u : U ! C exist. The earlier definition of band structure, based
on (5), allows for arbitrary values of k. It is clear, however, that one only needs to consider a single period of k’s projection
onto e1, e2, which we have denoted by a, b, to characterize the entire set (x, k) of nontrivial Bloch waves. This domain {(a,
b): �p 6 a < p, �p 6 b < p} is (essentially) what is referred to as the Brillouin zone.

Because the PDE is elliptic and U is compact, for each k there is a discrete set of eigenvalues fxjðkÞg1j¼1, counting multi-
plicity, accumulating only at infinity. Each xj(k) is continuous in k, so that the bands form sheets.

Popular numerical methods for band structure calculations are reviewed in [28]. Broadly speaking, they may be classified
as either time-domain or frequency domain schemes. In the first case, an initial pulse is evolved via the full wave equation
(typically using a finite difference or finite element approximation). If the simulation is sufficiently long, Fourier transforma-
tion in the time variable then reveals the full band structure. In the second case, the eigenvalue problem (2)–(4), (6)–(9) is
discretized directly. Such frequency domain schemes can be further categorized as:

1. PDE-based methods, which involve discretizing the unit cell using finite difference or finite element methods [3,19,20],
2. plane-wave methods which expand the function ũ in (5) as a Fourier series, and apply the partial differential operator in

Fourier space [28,29],
3. semi-analytic multipole expansion methods which apply largely to cylindrical or spherical inclusions [10,43],
4. methods which use a basis of particular solutions to the PDE at a given frequency x and enforce both interface and

boundary conditions as a linear system, such as the ‘‘multiple multipole” or ‘‘transfer-matrix” method [23,46], and
5. boundary integral (boundary element) methods [49], which includes the method described here.

For a fixed k, methods of type (1) and (2) result in large, sparse generalized eigenvalue problems whose lowest few eigen-
values approximate the first few bands xj(k). They have the advantage that they couple easily to existing robust linear alge-
braic techniques. PDE-based methods, however, require discretization of the entire cell in a manner that accurately resolves
the geometry of the inclusion X. Plane-wave methods, which perform extremely well when the index of refraction n is
smooth, have low order convergence when n is piecewise constant, as in the present setting. Both require a large number
of degrees of freedom.

Methods of type (3), (4) or (5), on the other hand, represent the solution using specialized functions (solutions of the PDE)
whose dependence on x is nonlinear. As a result, they can be much more efficient and high order accurate, dramatically
reducing the number of degrees of freedom required. Unfortunately, however, they result in a nonlinear eigenvalue problem
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involving all the parameters x, a and b, and somewhat non-standard techniques are required to find values of the param-
eters for which the system of equations is singular [47].

We are particularly interested in using boundary integral methods (BIEs), since they easily handle jumps in the index in
complicated geometry, have a well understood mathematical foundation, and can achieve rapid convergence, limited only by
the order of accuracy of the quadrature rules used. High order accuracy is important, not only because of the reduction in the
size of the discretized problem, but in carrying out subsequent tasks, such as sensitivity analyses [17] through the numerical
approximation of derivatives, and the computation of band slopes (group velocity), and band curvatures (group dispersion).

There is surprisingly little historical literature on using BIE for band structure calculations, although the last few years
have begun to see some activity in this direction (see, for example, [49]). There is, however, an extensive literature on inte-
gral equations for scattering from periodic structures, which we do not seek to review here. For some recent work and addi-
tional references, see [14,42].
3. Integral equations based on the quasi-periodic Green’s function

An elegant approach to designing integral representations for quasi-periodic fields involves the construction of the
Green’s function that imposes the desired conditions (6)–(9) exactly. We first need some definitions [16,41]. At wavenumber
x > 0, the free-space Green’s function for the Helmholtz equation, G is defined by �(D + x2)G = d0 where d0 is the Dirac delta
function centered at the origin. In 2D, this yields
GðxÞ ¼ GðxÞðxÞ ¼ i
4

Hð1Þ0 ðxjxjÞ; x 2 R2 n f0g; ð10Þ
where Hð1Þ0 is the outgoing Hankel function of order zero. By formally summing over images of the Green’s function placed on
the lattice K, with correctly assigned phases, we get an explicit expression for the quasi-periodic Greens function
GQPðxÞ ¼
X
d2K

eik�dGðx� dÞ ¼
X

m;n2Z
ambnGðx�me1 � ne2Þ: ð11Þ
We leave it to the reader to verify that GQP does, indeed, satisfy (6)–(9). One small caveat: the series in (11) is conditionally
convergent for real x. The physically meaningful limit is taken by assuming some dissipation x = x + ie in the limit e ? 0+

(see [18] for a more detailed discussion). It will be useful to distinguish between the copy of the Green’s function sitting in
the unit cell U and the set of all other images. For this, we define the ‘‘regular” part of the quasi-periodic Green’s function by
Gr
QPðxÞ ¼

X
m;n2Z

ðm;nÞ–ð0;0Þ

ambnGðx�me1 � ne2Þ: ð12Þ
This function is a smooth solution to the Helmholtz equation within U and clearly satisfies
GQPðxÞ ¼ GðxÞ þ Gr
QPðxÞ: ð13Þ
A spectral representation also exists [9,18], built from the plane-wave eigenfunctions of the quasi-periodic torus U:
GQPðxÞ ¼
1

VolðUÞ
X
q2K�

eiðkþqÞ�x

jkþ qj2 �x2
: ð14Þ
Here, K� :¼ fmr1 þ nr2 : m;n 2 Zg is the reciprocal lattice with vectors rj defined by ei�rj = 2pdij for i,j = 1,2. From the denom-
inators in (14) it is clear that GQP may blow up for specific combinations of x and k. The quasi-periodic Green’s function is, in
fact, well-defined if and only if those parameters satisfy the following non-resonance condition.

Definition 3 (Empty resonance). A parameter set (x, k), equivalently (x, a, b), is empty resonant if x = jk + qj for some
q 2K*, otherwise it is empty non-resonant.

Our terminology comes from the fact that the blow-up in GQP is physically the resonance of the ‘empty’ unit cell U, with
refractive index 1 everywhere and quasi-periodic boundary conditions. That is, GQP is undefined if and only if (x, a, b) lies on
the band structure of the empty unit cell. The blow-up of the Green’s function is less apparent from (11), but is manifested in
the divergence of the series, even in the limit x = x + ie with e ? 0+.

It will be convenient sometimes to refer to a Green’s function as a function of two variables, with G(x,y):¼G(x � y), and
GQP(x,y):¼GQP (x � y). Then, for each y 2 R2, the function GQP(�,y) is quasi-periodic.

We now represent solutions to the PDE eigenvalue problem (2)–(4), (6)–(9) by the layer potentials,
u ¼
SðnxÞrþDðnxÞs in X

SðxÞQP rþDðxÞQP s in U nX

(
ð15Þ
where the usual single and double layer densities [16] at any wavenumber x > 0 are defined by
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ðSðxÞrÞðxÞ ¼
Z
@X

GðxÞðx; yÞrðyÞdsy ð16Þ

ðDðxÞsÞðxÞ ¼
Z
@X

@GðxÞ

@ny
ðx; yÞsðyÞdsy ð17Þ
and their quasi-periodized versions are likewise
SðxÞQP r
� �

ðxÞ ¼
Z
@X

GðxÞQP ðx; yÞrðyÞdsy ð18Þ

DðxÞQP s
� �

ðxÞ ¼
Z
@X

@GðxÞQP

@ny
ðx; yÞsðyÞdsy: ð19Þ
Here ds is the usual arc length measure on @X, and the derivatives are with respect to the second variable in the outward
surface normal direction at y. It is clear [16] that the above four fields satisfy the Helmholtz equation at wavenumber x
in both X and U nX. Note that we have chosen a non-periodized representation within the inclusion X in (15), which has
some analytic advantages (see Theorem 4 and the last paragraph in the Appendix).

Since u in (15) satisfies (2), (3), (6)–(9), all that remains is to solve for densities r, s such that the matching conditions (4)
are satisfied, which we now address.

Using superscripts + and � to denote limiting values on @X, approaching from the positive and negative normal side,
respectively, we use the field (15) and the standard jump relations for single and double layer potentials [16,22] to write
uþ � u�

uþn � u�n

� �
¼

I 0
0 I

� �
þ

DðxÞQP � DðnxÞ SðnxÞ � SðxÞQP

TðxÞQP � TðnxÞ DðnxÞ� � DðxÞ�QP

" # !
s
�r

� �
¼: AQPg ð20Þ
Here I is the identity operator, while S and D are defined to be the limiting boundary integral operators (maps from
C(@X) ? C(@X)) with the kernels S and D interpreted in the principal value sense. (S is actually weakly singular so the limit
is already well-defined. A standard calculation [16,22] shows that D is weakly singular as well). The hypersingular operator T
has the kernel @

2Gðx;yÞ
@nx@ny

and is unbounded as a map from C(@X) ? C(@X). In these definitions, as in (16)–(19), it is implied that G
inherits the appropriate superscripts and subscripts from S, D and T. Finally, * indicates the adjoint. The amounts by which
the material matching conditions fail to be satisfied,
m :¼
uþ � u�

uþn � u�n

� �
; ð21Þ
is a column vector of functions which we call the mismatch. We summarize the linear system (20) by m = AQPg where g:¼[s;
�r]. It is important to note that the difference of hypersingular kernels, TðxÞQP � T ðnxÞ, in (20) is only weakly singular [16, Sec.
3.8]. This cancellation, achieved here by using the same pair of densities inside as outside the inclusion, is well known [44].
The result is that AQP is a compact perturbation of the identity and (20) is a Fredholm system of integral equations of the
second kind.

In the above scheme, we might hope that if it is possible to find nontrivial densities g whose field u gives zero mismatch m
for a set of parameters (x, a, b), then that set is a Bloch eigenvalue. Indeed (as with the case of simpler domain eigenvalue
problems [39, Sec. 8]) we have a stronger result.

Theorem 4. Let (x, a, b) be empty non-resonant. Then (x, a, b) is a Bloch eigenvalue if and only if Null AQP – {0}.
The proof occupies Appendix A. This suggests the core of a numerical scheme: at each of a sampling (e.g. a grid) of param-
eters (x, a, b), find the lowest singular value rminðeAQPÞ of a matrix discretization eAQP of AQP. The band structure will then be
found where rminðeAQPÞ is close to zero.

3.1. Discretization of the integral operators

Since the goal of this work is to explore periodization, we limit ourselves to the simplest case of @X being smooth. The
methods of this paper extend without much effort to other shapes, but the quadrature issues become more involved. Recall-
ing (13), note that the kernels in (20) are the sum of a component due to G which is weakly singular, plus the remainder due
to Gr

QP which is smooth (analytic). We will make use of a Nyström discretization using the spectral quadrature scheme of
Kress [31] for G and the trapezoidal rule for Gr

QP.
We first remind the reader of the periodic trapezoidal Nyström scheme [33], in the context of a general second kind

boundary integral equation
lðxÞ þ
Z
@X

kðx; yÞlðyÞdsy ¼ f ðxÞ; x 2 @X;
where @X is parametrized by the 2p-periodic analytic function z : ½0;2pÞ ! R2. Changing variable gives
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lðsÞ þ
Z 2p

0
Kðs; tÞlðtÞdt ¼ f ðsÞ; s 2 ½0;2pÞ;
where K(s,t):¼k(z(s),z(t))jz0(t)j and z
0
= dz/dt. Choosing N quadrature points tj = 2pj/N with equal weights 2p/N gives the N-by-

N linear system for the unknowns lðNÞj , which approximate the exact values l(tj), as
lðNÞk þ
2p
N

XN

j¼1

Kðtk; tjÞlðNÞj ¼ f ðtkÞ; k ¼ 1; . . . ;N: ð22Þ
By Anselone’s theory of collectively compact operators [33], the convergence of errors lðNÞj � lðtjÞ
��� ��� inherits the order of the

quadrature scheme applied to the exact integrand K(s,�)l, which is analytic when k and f are.

Remark 5. For analytic integrands, the periodic trapezoidal rule has exponential convergence with error O(e�2cN) where c is
the smallest distance from the real axis of any singularity in the analytic continuation of the integrand. [33, Thm. 12.6].

The above discretization is used to populate the matrix entries in (20) that are due to the smooth compoment Gr
QP. (We

explain how to compute this kernel itself in Section 3.2.)
For non-smooth kernels, such as G, the rule (22) must be replaced by a quadrature that correctly accounts for the singu-

larity in order to retain high order accuracy. There are a variety of such schemes, such as those of [2,24,30]. By fixing the
order of accuracy, they allow for straightforward coupling to fast multipole acceleration [12–14,42] by making local modi-
fications of a simple underlying quadrature rule (such as the trapezoidal rule or a composite Gaussian rule). In the present
context, we ignore such considerations and use a global rule due to Kress [31] that achieves spectral accuracy in the loga-
rithmically singular case.

The essential idea of Kress’ scheme (after transformation of variables to the interval [0,2p]) is to split a logarithmically
singular kernel K(s,t) in the form
Kðs; tÞ ¼ log 4 sin2 s� t
2

� 	
K1ðs; tÞ þ K2ðs; tÞ ð23Þ
with K1 and K2 periodic and analytic. K2 is (again) handled with the trapezoidal rule. For K1, the Kussmaul–Martensen quad-
rature rule is spectrally accurate:
Z 2p

0
log 4 sin2 s� t

2

� 	
gðtÞdt �

XN

j¼1

RðNÞj ðsÞgðtjÞ ð24Þ
with quadrature weights (deriving from the Fourier series of the log factor) given by
RðNÞj ðsÞ ¼ �
XN=2�1

m¼1

2
m

cos mðs� tjÞ �
2
N

cos
N
2
ðs� tjÞ: ð25Þ
Thus, the matrix elements in discretizing (23) are Kðtk; tjÞ ¼ RðNÞjj�kjð0ÞK1ðtk; tjÞ þ K2ðtk; tjÞ. Finally, it is always the difference of
two hypersingular operators T that appears in the integral Eq. (20). This difference is only logarithmically singular, so that
Kress’ rule can be used for every block of (20). We refer the reader to [31] for further details.

In summary, a matrix discretization bAQP of AQP is formed by using the above quadrature rules for each of the 2-by-2 inte-
gral operator blocks in (20). This matrix maps density values to field values. However, in order to create a matrix whose sin-
gular values approximate those of AQP we must instead normalize such that 2N-dimensional Euclidean 2-norms correctly
approximate L2(@X)-norms. This is done by symmetrizing using quadrature weights to give our final matrix
eAQP ¼W1=2bAQPW�1=2 ð26Þ
where W is diagonal with diagonal elements wj = wj+N = (2p/N)jz0(tj)j, for j = 1,. . .,N.
The net result of the preceding discussion is that with the use of specialized quadratures on smooth boundaries, the sin-

gular values of eAQP are spectrally accurate approximations to those of AQP. We demonstrate this convergence for a small tre-
foil-shaped inclusion in Fig. 2(a); the convergence is spectral, until the error is approximately machine precision times the
matrix 2-norm. The rate appears to be faster at a Bloch eigenvalue (in this case on the fourth band) than far from one.
Fig. 2(b) shows that the minimum locates the parameter b to 14 digit accuracy for N P 70.

3.2. New method for evaluation of the quasi-periodic Greens function

In order to compute the elements of eAQP, one must evaluate Gr
QP defined by (12); in this section, we present a surprisingly

simple (and apparently new) method for this. Since the sums (11) and (14) converge too slowly to be numerically useful,
many sophisticated schemes have been devised. Some of these are based on the Fourier representation (such as [9]), but
most are based on the observation that
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Fig. 2. Convergence for quasi-periodic Greens function scheme of Section 3. (a) Absolute error in rminðeAQPÞ vs. N the number of quadrature nodes on @X, for
Bloch parameters a = p/2 and the two different b values labeled. The unit cell with e1 = (1,0), e2 = (0.4,1), and inclusion, described by the radial function
r(h) = 0.2(1 + 0.3cos3h), are shown in the inset. Index is n = 3 and frequency x = 4.5. For b = 2, error is taken relative to the converged value
0.01879908530381247; for b = b0, relative to 0. The matrix eAQP has 2-norm of about 25. (b) rminðeAQPÞ vs. difference in parameter b from the Bloch eigenvalue
b0, for several different numbers of quadrature points N. Note the horizontal log scale. This shows that it is the convergence rate at the Bloch eigenvalue that
controls the accuracy with which the minimum can be found. (c) Relative error (+ symbols) in evaluation of lattice sum S3 by the method of Section 3.2 vs.
the maximum order L in (27). Parameters are as in Table 2 of [38], whose claim S3 = 2.13097899279352 + 5.66537068305984i is taken as the true value.
Also, relative error (� symbols) for eS3 which excludes the 3 � 3 block of neighbors (parameters are the same; true value is taken as the converged value at
L = 50).
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Gr
QPðr; hÞ ¼

XL

l¼�L

SlJlðxrÞeilh; ð27Þ
where (r, h) are the usual polar coordinates, and Jl the regular Bessel function of order l. As L ?1, this expression is uni-
formly convergent in the unit cell U, as long as there exists a circle about the origin which contains U but encloses no points
in Kn{0}. The coefficients Sl in this expansion are know as lattice sums, given by
Sl ¼
X

m;n2Z
ðm;nÞ–ð0;0Þ

ambnHð1Þl ðxrmnÞe�ilhmn ;
where (rmn, hmn) are the polar coordinates of me1 + ne2, and Hð1Þl is the outgoing Hankel function of order l. Thus, the issue of
evaluating Gr

QP has been reduced to that of tabulating the lattice sums. This problem itself has a substantial literature (see, for
example, [15,18,34,38,40]). Nevertheless, very few papers discuss the problem of empty resonances, at which point the lat-
tice sums Sl blow up. One notable exception is the work of Linton and Thompson [35], who analyze this blowup for periodic
one-dimensional arrays in two-dimensional scattering. They also propose a regularization method to overcome it.

We present here the construction of a small linear system whose solution yields the lattice sums rather easily (away from
empty resonances). In physical terms, we compute the field induced by the free-space Green’s function G, determine how it
fails to satisfy quasi-periodicity, and use the representation (27) to enforce quasi-periodicity numerically. More precisely,
given a field u, we define the discrepancy by
d ¼

f

f 0

g

g0

2666664

3777775 :¼

ujL � a�1ujLþe1

unjL � a�1unjLþe1

ujB � b�1ujBþe2

unjB � b�1unjBþe2

26666664

37777775: ð28Þ
We can interpret f, f0 as functions on wall L and g, g
0
as functions on wall B. We construct a 4M-component column vector d by

sampling these four functions at Gaussian quadrature points yðLÞm

n oM

m¼1
on L, and yðBÞm

n oM

m¼1
on B. If we let the field u(x) = G(x),

then for m = 1,. . .,M, the mth element of d is G yðLÞm

� �
� a�1G yðLÞm þ e1

� �
. The remaining 3M entries in d are computed in the

analogous fashion.
Now let H be a (complex) matrix of size 4M � (2L + 1), defined as follows. For l = �L,. . .,L, fill the (l + L + 1) th column in the

same manner as d, but using the field u(x) = Jl(xr)eilh. Letting s :¼ fSlgL
l¼�L, it is straightforward to verify that the linear system
Hs ¼ �d ð29Þ
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Fig. 3. Breakdown of quasi-periodic Greens function scheme, for the system of Fig. 2a except with e2 = (0.5,1). (a) Minimum singular value of eAQP vs.
b = k�e2 and x, as a log density plot over a slice with fixed a = 0.8. Dark curves indicate the band structure, and superimposed dotted lines the ‘empty’ band
structure where GQP blows up. (b) Zooming in by a factor of 107 to the region shown by the dot in (a), showing failure to resolve band structure at the
intersection. (c) log 1-norm of the matrix eAQP plotted over the same region as (b); it is of order the inverse of the distance to the empty band structure.
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yields values for the lattice sums that annihilate the discrepancy induced by the source G. We solve the linear system in the
least squares sense. This has to be done with some care, since the Bessel functions Jl become exponentially small for large l. A
simple fix is to right-precondition the system by scaling the (l + L + 1) th column of H by the factor ql:¼1/Jl(min[xR,l]), where
R:¼maxx2Ujxj is the unit cell radius. The entire procedure may be interpreted as finding the representation (27) which min-
imizes the L2-norm of the discrepancy of the resulting GQP.

Fig. 2(b) shows that the error in evaluating Sl, for l = 3, has exponential convergence in L. We fixed M = 24 (large enough
that further increase had no effect). Fourteen digits of relative accuracy are achieved for L P 46, comparable in accuracy to
[38]. Although the maximum achievable accuracy for Sl deteriorates exponentially as jlj increases, the resulting accuracy of
Gr

QP computed via (27) is close to 14 digits everywhere in U.1 We do not claim that our method is optimal in terms of speed
(although at 0.05 s to solve for all Sl values, it is adequate), merely that it is accurate, convenient and robust. To our knowledge it
has not been proposed in the literature.

The convergence rate in the boundary L2-norm of expansions such as (27) depends on the (conformal) distance from the
domain to the nearest field singularity (a result of Vekua’s theory and approximation in the complex plane [8, Ch. 6]). Thus,
the rate may be improved by increasing this distance by removing the rest of the 3 � 3 block of nearest neighbors from the
lattice sum, and representing
1 Thi
in turn
eGr
QPðxÞ :¼

X
ðj;kÞ 2 Z2nf�1;0;1g2

ajbkGðx� je1 � ke2Þ ¼
XL

l¼�L

eSlJlðxrÞeilh: ð30Þ
To solve for feSlg, the right-hand side of the linear system is now chosen to be the direct summation of these neighbors,
uðxÞ ¼ eGðxÞ :¼

P
j;k2f�1;0;1gajbkGðx� je1 � ke2Þ. We may then evaluate GQP ¼ eG þ eGr

QP. As Fig. 2(c) shows, the convergence rate
for eSl, and hence for GQP, is now a factor 2–3 better. Hence we use this method below, fixing L = 30.
3.3. The empty resonance problem

Given a photonic crystal (inclusion X with index n), using the methods of Sections 3.1 and 3.2 we are able to construct the
matrix eAQP for any given frequency and Bloch parameters (x, a, b). Fig. 3(a) shows the minumum singular value of this ma-
trix as a function over the (b, x) plane, for constant a: the band structure is visible as the zeros of this function. We have also
superimposed the band structure of the empty unit cell (dotted lines). Theorem 4 guarantees that, away from the empty unit
cell band structure, no spurious modes will be found, and that no modes are missed.

However, zooming into one of the many intersections of the two sets of curves (Fig. 3(b)), we see that in the neighborhood
of the empty band structure, the desired singular values take on arbitrary fluctuating values that obscure the theoretical
behavior near their intersection. This prevents any attempt to locate the desired zero set to an accuracy better than
Oð ffiffiffiffiffiffiffiffiffiffiffiemach
p Þ, where emach is the machine precision. As Fig. 3(c) shows, this is explained by the blowup of the entries of the ma-

trix eAQP as one approaches the empty band structure. This, in turn, causes unbounded roundoff error when computing small
singular values in finite-precision arithmetic.
s is to be expected from arguments similar to [4, Eq. (5)]: the residual of the linear system, around 10�14, approximates the boundary error norm, which
controls the interior error norm when using a basis of particular solutions to the Helmholtz equation.
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Remark 6. The above demonstrates a fundamental flaw inherent in the use of the quasi-periodic Greens function in band
structure problems; there are empty-resonant parameter sets (sheets in the space (x, a, b)) where the desired band structure
cannot be computed. Furthermore, loss of accuracy is inevitable near these parameter sets.

This motivates the development of a more robust scheme.

4. Periodizing using auxiliary densities on the unit cell walls

4.1. Inclusion images and a new linear system

Section 3.2 illustrated the fact, well known in the fast multipole literature [6,14,12,13,18], that summing the nearest
neighbors directly (i.e. excluding them from the quasi-periodic field representation) results in much improved convergence
rates. This motivates defining generalizations of (16) and (17) that include summation over the appropriately phased 3 � 3
nearest neighbor images, as shown in Fig. 1(b),
ðeSðxÞrÞðxÞ ¼ Z
@X

X
j;k2f�1;0;1g

ajbkGðxÞðx; y þ je1 þ ke2ÞrðyÞdsy ð31Þ

ðeDðxÞsÞðxÞ ¼ Z
@X

X
j;k2f�1;0;1g

ajbk @GðxÞ

@ny
ðx; y þ je1 þ ke2ÞsðyÞdsy ð32Þ
We now choose a layer potential representation for u that involves only free space kernels:
u ¼ SðnxÞrþDðnxÞs inXeSðxÞrþ eDðxÞsþ uQP½n	 inU nX

(
ð33Þ
The auxiliary field uQP will be represented by a new set of layer potentials that lie on the ‘‘tic-tac-toe” stencil of Fig. 1(b),
consisting of the boundary of U and its closest extensions, none lying in the interior of U. We will return to this in Section
4.2. For the moment, let us denote the unknown densities that determine uQP by n. By construction, the representation (33)
satisfies (2) and (3) in U, so that it remains only to impose both the matching/continuity conditions (4) and quasi-periodicity
(6)–(9). Imposing the mismatch m defined by (21) and the discrepancy d defined by (28) on u, the unknowns in (33) must
satisfy a linear system of the form:
E
g
n

� �
:¼

A B

C Q

� � g
n

� �
¼

m

d

� �
; ð34Þ
where, as before, g:¼[s; �r], We will describe the operators A, B, C, and Q in more detail shortly. For the moment, note that if
there exists a density [g;n] which generates a nontrivial field with vanishing mismatch and discrepancy, then it is a solution
to (2), (3), (4), (7)–(9) and the corresponding parameters (x, a, b) must be a Bloch eigenvalue. Numerical evidence supports
the following stronger claim, the analog of Theorem 4.

Conjecture 7. (x, a, b) is a Bloch eigenvalue if and only if Null E – {0}.
This suggests, as in Section 3, computing the band structure by locating the parameter families where (a discretization of)

E is singular. The point of the new scheme is that it should be robust; if the conjecture holds, then (in contrast to the quasi-
periodic Green’s function approach), there will be no spurious parameter values where the method breaks down.

To discuss the operators in E, we need some additional notation. We assume that the wavenumber x and quasiperiodicity
parameters (a, b) are given. Let W be a curve in R2 on which single and double layer densities are defined, with the corre-
sponding potentials written as
ðSWrÞðxÞ ¼
Z

W
Gðx; yÞrðyÞdsy ð35Þ

ðDWsÞðxÞ ¼
Z

W

@G
@ny
ðx; yÞsðyÞdsy: ð36Þ
Letting V be a (possibly distinct) target curve in R2, we define the operators
ðSV ;WrÞðxÞ ¼
Z

W
Gðx; yÞrðyÞdsy x 2 V ð37Þ

ðDV ;WsÞðxÞ ¼
Z

W

@G
@ny
ðx; yÞsðyÞdsy x 2 V ð38Þ

ðD�V ;WrÞðxÞ ¼
Z

W

@G
@nx
ðx; yÞrðyÞdsy x 2 V ð39Þ

ðTV ;WsÞðxÞ ¼
Z

W

@2G
@nx@ny

ðx; yÞsðyÞdsy x 2 V : ð40Þ
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When V = W, these operators are to be understood in the principal value sense. By analogy with (31) and (32), versions of
these operators whose kernels include the phased sum over 3 � 3 images of the source are indicated with a tilde (
): that
is, eSV ;W ; eDV ;W ; eD�V ;W , and eT V ;W .

We are now in a position to provide explicit expressions for the operators A, B, C, Q in (34). Comparing (33) to (15), it is
clear that the operator A is the same as AQP in (20) but with the replacement of SðxÞQP ; DðxÞQP and TðxÞQP , by eS@X;@X, eD@X;@X and eT @X;@X,
respectively. It is straightforward to verify that A is a compact perturbation of the identity.

The operator C describes the effect of the inclusion densities on the discrepancy d. Its eight sub-blocks are found by insert-
ing (31) and (32) into (33) then evaluating (28), giving
Fig. 4.
upper s
contrib
effect. T
blocks
segmen
C ¼

eDL;@X � a�1 eDLþe1 ;@X �eSL;@X þ a�1eSLþe1 ;@XeT L;@X � a�1eT Lþe1 ;@X �eD�L;@X þ a�1 eD�Lþe1 ;@XeDB;@X � b�1 eDBþe2 ;@X �eSB;@X þ b�1eSBþe2 ;@XeT B;@X � b�1eT Bþe2 ;@X �eD�B;@X þ b�1 eD�Bþe2 ;@X

2666664

3777775

Consider now the any of the four upper sub-blocks of C. There are nine phased copies of @X which contribute to the field on
the left (L) and right (L + e1) wall. From symmetry and translation invariance considerations, however, it is easy to check that
the contributions from the six left-most images on L (dotted curves in Fig. 4(a)) are equal to the contributions of the six right-
most images on L + e1 (dotted curves in Fig. 4(b)). In the (1,1) sub-block, for example, we have:
eDL;@X � a�1 eDLþe1 ;@X ¼
X

k2f�1;0;1g
bk aDL;@Xþe1þke2 � a�2DL;@X�2e1þke2


 �

A rotated version of the analysis applies to the lower four sub-blocks in C. The result is that the entries in C involve only
source-target interactions at distances greater than the size of the unit cell, ensuring the rapid convergence of a representa-
tion in terms of smooth functions.

We next discuss the representation of n and uQP[n] in more detail, which will determine the form of blocks Q and B of the
full system matrix E.

4.2. Choice of auxiliary densities and their images

The auxiliary field uQP is determined by the choice of layer potentials on the boundary of (and outside of) U. We will use
double and single layer densities on both the left (L) and bottom (B) boundaries of U, as well as on the other segments of the
‘‘tic-tac-toe” board in Fig. 1(b). More precisely, we define the vector of unknowns n by n:¼[sL; �rL; sB; �rB], and set
uQP ¼
X

j2f0;1g
k2f�1;0;1g

ajbk SLþje1þke2
rL þDLþje1þke2

sL

 �

þ
X

j2f�1;0;1g
k2f0;1g

ajbk SBþje1þke2
rB þDBþje1þke2

sB

 �

ð41Þ
The inclusion of the image segments leads to cancellations that are numerically advantageous in the operator Q, just as we
found that images helped with the operator C in the preceding section.

We should first clarify the definition (28) of the discrepancy functions: field values should be interpreted as their limiting
values on the wall approaching from inside U, since it is the field in U that (33) and (41) represent. For example,
f :¼ uþjL � a�1u�jLþe1

, where, as before u�ðxÞ :¼ lime!0þuðx� enÞ, and n is the normal at x.
Recall now that the operator Q expresses the effect of the four densities in n on the four discrepancy functions f, f

0
, g, g0. If

(41) contained only the terms j = k = 0, this would correspond to densities rL and sL placed on L, and rB and sB placed on B.
While this is mathematically acceptable, it results in various complicated self-interactions and interactions between seg-
ments that share a common corner. This would lead to singularities in densities requiring more complicated discretization
and quadrature. Although there has been significant progress in this direction (see, for example, [11,25]), in the present con-
text we have the luxury of including the ten additional image segments in (41), which cancel both the self and near-field
(a) (b) (c) (d)

Discrepancy cancellation due to neighbor image sums. Each arrow represents the influence of a source density on a target segment. (a) For the four
ub-blocks of C, the six nearest source images (dotted) contribute to the discrepancy on the left wall L. (b) The six nearest source images (dotted)
ute exactly the same field (suitable phased) to the right wall (L + e1). The net result is that only the distant sources, shown in bold, have a non-zero
he same holds for all four upper sub-blocks of C. A rotated version applies to the lower four sub-blocks of C. (c) and (d) Contributions to the sub-

QLL and QLB of Q. The seven indicated terms (dotted source segments) cancel in the two diagrams, leaving only the contributions from distant wall
ts shown in bold. A rotated version applies to the sub-blocks QBL and QBB.
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corner interactions. As a result, our implementation is simpler and involves fewer degrees of freedom. The cancellation
mechanism is shown in Fig. 4. The effect on u+jL of the seven segments touching L, for example, cancels the effect on
u�jLþe1

of the seven segments touching L + e1, leaving only ten far field contributions.
It is important to note that the local terms due to the jump relations do not cancel: e.g. a density function sL placed on L

contributes a term 1
2 sL to u+jL, while asL placed on L + e1 contributes � 1

2 asL to u�jLþe1
. These two terms add to contribute sL to

f. One may check in this fashion that the jump relations contribute an identity to the diagonal sub-blocks of Q. This yields the
crucial result that Q is the identity plus a compact operator, with the compact part generated by interactions at a distance
greater than the size of the unit cell. After the above cancellations and simplification, we have,
Q ¼ I þ
Q LL Q LB

Q BL Q BB

� �

where
Q LL ¼

P
j2f�1;1g;k2f�1;0;1g

jajbkDL;Lþje1þke2
�

P
j2f�1;1g;k2f�1;0;1g

jajbkSL;Lþje1þke2P
j2f�1;1g;k2f�1;0;1g

jajbkTL;Lþje1þke2 �
P

j2f�1;1g;k2f�1;0;1g
jajbkD�L;Lþje1þke2

2664
3775

Q LB ¼

P
k2f0;1g

bk aDL;Bþe1þke2 � a�2DL;B�2e1þke2


 � P
k2f0;1g

bk �aSL;Bþe1þke2 þ a�2SL;B�2e1þke2


 �
P

k2f0;1g
bk aTL;Bþe1þke2

� a�2TL;B�2e1þke2


 � P
k2f0;1g

bk �aD�L;Bþe1þke2
þ a�2D�L;B�2e1þke2

� �
2664

3775

Q BL ¼

P
j2f0;1g

aj bDB;Lþje1þe2 � b�2DB;Lþje1�2e2


 � P
j2f0;1g

aj �bSB;Lþje1þe2 þ b�2SB;Lþje1�2e2


 �
P

j2f0;1g
aj bTB;Lþje1þe2 � b�2TB;Lþje1�2e2


 � P
j2f0;1g

aj �bD�B;Lþje1þe2
þ b�2D�B;Lþje1�2e2

� �
2664

3775

Q BB ¼

P
j2f�1;0;1g;k2f�1;1g

kajbkDB;Bþje1þke2
�

P
j2f�1;0;1g;k2f�1;1g

kajbkSB;Bþje1þke2P
j2f�1;0;1g;k2f�1;1g

kajbkTB;Bþje1þke2
�

P
j2f�1;0;1g;k2f�1;1g

kajbkD�B;Bþje1þke2

2664
3775
Finally, we discuss the B operator from (34), which describes the effect of the auxiliary densities n on the mismatch. As with
A, since the mismatch involves values on only a single curve @X, there is no opportunity for cancellation. Inserting (41) into
(21) we get
B ¼
X

j2f0;1g;k2f�1;0;1g
ajbk D@X;Lþje1þke2

�S@X;Lþje1þke2
0 0

T@X;Lþje1þke2
�D�@X;Lþje1þke2

0 0

" #
þ

X
j2f�1;0;1g;k2f0;1g

ajbk 0 0 D@X;Bþje1þke2
�S@X;Bþje1þke2

0 0 T@X;Bþje1þke2
�D�@X;Bþje1þke2

" #
ð42Þ
Summarizing the above, E is a compact perturbation of the identity. Its blocks C and Q involve interaction distances greater
than the unit cell size. Its block A involves distances controlled by the shape of the inclusion and its nearest approach to its
neighboring images. Its block B involves distances determined by the nearest approach of @X to @U.
4.3. Numerical implementation and discretization of B

We discretize the four blocks of the integral operator E in (34) to give the matrix eE 2 Cð2Nþ4MÞ�ð2Nþ4MÞ as follows. We sam-
ple the densities on @X at equispaced points with respect to the given definition of the curve, as in Section 3.1. We sample
the densities on the walls L and B at M standard Gaussian nodes, as in Section 3.2. A is then discretized in the same way as AQP

in Section 3.1 with a mix of the periodic trapezoidal rule and Kress’ singular quadratures for the self-interaction of @X. The
(Nyström) method (22) may be used for the off-diagonal block C, and also for the wall’s self-interaction Q. No special singular
quadratures are needed in Q, due to the cancellations discussed above.

The B operator (42) involves computing the field due to source densities on walls L and B (and their images shown in
Fig. 1(b)) at targets on @X. When the distance from the inclusion to boundary dist (@X, @U) is large, the plain Nyström meth-
od may be used to construct the discretized matrix bB. We will refer to this as discretization method B1. With nodes ym and
weights wm on wall L, and nodes xj on @X, for example, the term S@X,L in the (1,2)-block of (42) becomes the matrix bS 2 CN�M

with elements bSjm ¼ i
4 Hð1Þ0 ðxjxj � ymjÞwm.

When dist (@X, @U) becomes small, of course, the convergence rate of method B1 will become unacceptably poor. How-
ever, by construction, for a Bloch eigenfunction the field (41) generated by the wall densities in n has no singularities in the
3 � 3 neighboring block of unit cells. Hence these densities remain smooth, poor convergence being merely due to inaccurate
evaluation of their field close to the walls. This leaves room for a large number of options:
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Fig. 5. Convergence of new periodizing scheme using auxilliary densities (described in Section 4), using method B1, for the same geometry and parameters
as in Fig. 2(a). The meaning of the two curves is also the same as in the earlier figure. (a) Absolute error in rminðeEÞ vs. M the number of nodes on each unit
cell wall, for fixed N = 70 nodes on @X. (b) Same as (a) except convergence vs. N, for fixed M = 30. (c) Same as Fig. 3(b) but using the new scheme: note the
absence of pollution by the empty band structure.
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(B2) For the rows of bB corresponding to target points on @X that are distance d0 or closer to @U, use adaptive Gauss–Kron-
rod quadrature2 with integrand given by the product of the kernel function and the Lagrange polynomial interpolant [32,
Sec. 8.1] for the density at the M quadrature points. d0 is some O(1) constant. For the other rows, use method B1.

(B3) Project onto an order-L cylindrical J-expansion at the origin. This is done by computing a representation (27) for each
of the point monopole or dipole sources in the quadrature approximation to the source densities on the walls, and
then evaluating this at the target quadrature points on @X to fill the elements of bB. The example term discussed
for B1 gives bS ¼ RP, where the ‘‘source-to-local” matrix P 2 Cð2Lþ1Þ�M has elements
2 Thi
3 All
Plm ¼
i
4

Hð1Þl ðxjymjÞe�ilhm wm
and converts single layer density values to J-expansion coefficients. This follows from Graf’s addition formula [1, Eq. 9.1.79].
The expansion matrix R 2 CN�ð2Lþ1Þ has elements Rjl ¼ JlðxjxjjÞeil/j . In the above hm, /j are polar angles of points ym, xj, respec-
tively. Similar formulae apply for double layers and evaluation of derivatives. To reduce dynamic range (hence roundoff er-
ror) we in fact scale the J-expansion by the factors ql of Section 3.2 (this does not change the mathematical definition of bS.)

(B4) Use a more sophisticated quadrature approach, such as those of [5,26,37].

Methods B2–B4 evaluate uQP due to a spectral interpolant of the discretized wall densities, with an accuracy that persists
up to the boundary of U. Note that this does not increase the number M of degrees of freedom associated with each such
density. Since the underlying density is smooth (in fact analytic), the convergence rate is high and we are able to keep M
very modest.

We have implemented methods B1, B2 and B3. We use the quadrature weights to scale the matrix bE to give eE in an anal-
ogous fashion to (26), so that singular values of eE approximate those of E.

Finally, there are many possible ways to locate parameter values (x, a, b) where eE is singular. In this paper, we will simply
plot its smallest singular value rminðeEÞ vs. the Bloch parameters, as in Section 3.

5. Results of proposed scheme

We first test the convergence of the new scheme for the same small inclusion used in Section 3, with the simplest dis-
cretization method for B, namely B1. As before, we test two Bloch parameter b values, one which is far from an eigenvalue,
and one of which is guaranteed to be an eigenvalue according to Theorem 4. Fixing N = 70, which was found in Section 3.1 to
be fully converged when at an eigenvalue, we first vary M, the number of nodes per unit cell wall. Fig. 5(a) shows the con-
vergence of the minimum singular value of the discretized matrix eE to its converged value (when far from an eigenvalue), or
to zero (when at an eigenvalue). The convergence is spectral, and in both cases full machine accuracy is reached at M = 30.
(For N > 70 the results are unchanged.) Thus for a matrix of order 2N + 4M = 260, we are able to locate the desired band struc-
ture with relative error around 10�15 in the Bloch parameters (a, b). Filling such a matrix takes around 0.45 s and computing
the complex SVD around 0.15 s.3 Furthermore, by storing coefficient matrices in the expansion eE ¼P�16j;k62ajbkeEðj;kÞ at fixed
x, we can fill eE for new a, b values in 0.05 s.
s was implemented with MATLAB’s quadgk, which uses a pair of 15th and 7th order formulae, with relative tolerance set to 10�12.
timings are reported for a laptop running MATLAB 2008a with a 2 GHz Intel Core Duo CPU.
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Fig. 5(b) shows that, with M in the new quasi-periodizing scheme sufficient to yield machine precision, the error conver-
gence rate with respect to N is the same as that of the old scheme. Fig. 5(c) demonstrates the robustness of the scheme, by
plotting the smallest singular value over the same region of parameter space as Fig. 3(b). Notice that the location of the de-
sired band structure (black line) is unchanged, but that the divergent behavior near the empty resonant band structure has
entirely vanished.
5.1. Inclusions approaching and intersecting the unit cell wall

Given a crystal of inclusions, it may be impossible to choose a parallelogram unit cell U whose boundary does not come
close to or even intersect @X. Although this is not an issue for the scheme of Section 3, for the new scheme which relies on @U
it is a potential problem.

We first show that, as expected, with method B1 the error performance deteriorates exponentially as @X approaches @U.
In Fig. 6(a) we plot the minimum singular value at a Bloch eigenvalue, as a function of distance d that the inclusion has been
translated in the x direction (translation does not affect the Bloch eigenvalue.) Numerical parameters N and M are held fixed.
The logarithm of the error grows roughly linearly with d and reaches O(1) for dist (@X, @U) = 0, indicated by the dotted ver-
tical line at around d = 0.23. Method B2, also shown in Fig. 6(a), uses adaptive quadrature for accurate evaluation of uQP in all
of U. For very small d, the inclusion is still centrally located (far from the wall) and B2 is identical to B1, with an error of
10�15. The error is around 10�12 as one approaches the wall (more or less independent of d), limited by the accuracy of quad-
gk. This proves that the deterioration seen with B1 is associated with the B operator block, and can be remedied merely by
careful discretization of B without increasing the matrix size. We did not bother continuing the computation with B1 or B2
after the inclusion crosses the wall; here they fail because (41), as constructed, represents uQP only inside U (jump relations
cause the values outside U to be different). We note that to use B1 or B2 correctly, one would have to wrap the boundary
points outside U back into the cell, evaluate at the wrapped point, and correct for phase. Method B2 is not very useful in
practice since the call to a black box adaptive quadrature routine causes the matrix fill time to increase to 55 s.

Finally we use method B3 with L = 16, M = 30 and with L = 22, M = 40. In the first case, errors grow slowly to around 10�12

as dist (@X, @U) reaches zero, and then continue to grow slowly to a plateau at around 10�9, even though most of @X now
falls outside of the unit cell. The cost of B3 is not much more than B1, taking 0.7 s to fill eE. Note that the J-expansion used to
represent uQP has effectively carried out analytic continuation beyond U. This is stable because our image structure has
pushed the singularities out beyond the nearest image cells. It is perhaps worth observing that some care must be taken
in setting L. With M = 30, increasing L above 16 would worsen errors (not shown). The reason is that the coefficients
jlj > 16 involve more oscillatory integrands which are not resolved by M = 30 points. Increasing M to 40 permits increased
precision with L = 22, as seen in Fig. 6(a).

There is another potential pitfall with method B3 as implemented; if both L and d get larger, there may arise singular val-
ues of eE which become exponentially small, associated with highly oscillatory non-physical densities on the farthest part of
@X. For illustration, with L = 16 and d = 0.6, the second smallest singular value is 10�4; with L = 22 the second smallest sin-
gular value shrinks to 10�6. (When d = 0, the second smallest singular value is 10�1.) This is troublesome for eigenvalue
search methods that track rminðeEÞ vs. Bloch parameters, since the desired minima will be obscured by these spurious small
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Fig. 6. (a) Dependence of rminðeEÞ on x-translation distance d of @X relative to the system of Fig. 2(a), for fixed N = 70, and M = 30. The vertical line shows
where @X starts to touch @U. B is discretized as follows: method B1 (+ symbols), method B2 with d0 = 0.2 (h symbols), method B3 with L = 16 (� symbols),
method B3 with L = 22 and M = 40 (* symbols). Inset shows unit cell and inclusion at d = 0.6. (b) Band structure for crescent-shaped photonic crystal shown
in (c), index n = 2, shape (0.265cos2pt + 0.318cos4pt, 0.53sin2pt), 0 6 t < 1, unit cell e1 = (1,0), e2 = (0.45,1). A tour CX MC of the Brillouin zone is shown,
where C is (a,b) = (0,0), X is (p,0), and M is (p,p). (d) Contours of the Bloch mode Re[u] with parameters shown by the dot on the band diagram.
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singular values everywhere except in a small neighborhood of the desired band structure. We will discuss search methods
less sensitive to this problem in a future paper. For now the lesson is that, when parts of an inclusion extend far beyond U,
there is a price to pay for making use of analytic continuation.

5.2. Application to band structure

We compute the band structure of a more difficult crystal in Fig. 6(b). X is far from circular, hence simple multipole meth-
ods [23] would not be accurate. The closest approach to its neighbors is only 0.06, so that N = 150 points are needed in dis-
cretizing the inclusion boundary. Note that any parallelogram unit cell must intersect @X, so the method of [49] cannot be
used without modification. We use method B3 with M = 35 and L = 18. As illustrated before in Fig. 2(b), the minimum values
of rminðeEÞ on the band structure indicate the size of the errors in the Bloch parameters found. By this measure, sampling 100
random points on the first 15 bands, we find a median error of 3 � 10�10 and a maximum 1.6 � 10�9. 1.7 s were required to
fill the matrix eE of order 440 once for a given x, a, b (and 0.13 s for subsequent values of a, b). The SVD required 0.7 s for a
matrix of this size. We located the band structure using 8000 such evaluations and a specialized search algorithm, which we
will describe in a forthcoming paper. The search algorithm is also accelerated by computing the determinant of eE rather than
the SVD, at a cost of 0.1 s for each matrix. The total CPU time required was 35 min.

Fig. 6(d) shows a single Bloch mode on the 11th band for this crescent-shaped crystal. This took 16 s to evaluate on a
100 � 100 grid over U using (33), and the J-expansion for (41) (with no fast-multipole acceleration).
6. Conclusions

We have presented two algorithms for locating the band structure of a two-dimensional photonic crystal, in the z-invari-
ant Maxwell setting. The first (Section 3) uses the quasi-periodic Green’s function. Theorem 4 guarantees the success of this
method (no spurious or missed modes) as long as the band structure for the empty unit cell is avoided, where we have
shown that the method fails. The second method (Section 4) introduces a small number of additional degrees of freedom
on the walls to represent the periodizing part of the field: numerical evidence suggests that it is immune to breakdown
for any Bloch parameters (Conjecture 7). The two schemes are connected by the following observation.

Remark 8. Computing the Schur complement formula for the operator system (34) recovers the quasi-periodic Green’s
function approach described by (20). In particular,
AQP ¼ A� BQ�1C:
The quasi-periodic Green’s function approach fails when Q becomes singular and AQP blows up. The full system (34), on the
other hand, remains well-behaved.

We have shown spectral convergence for both schemes, achieving close to machine precision accuracy on simple crystals
using only a few hundred degrees of freedom, hence CPU times of less than 1 s for testing at a single parameter set (x, a, b).
In the new scheme we have shown (method B3) how to handle the passage of the inclusion through the unit cell boundary,
without much sacrifice in accuracy, without much extra numerical effort, and with no bookkeeping needed to determine
which points of @X lie in U. The latter is convenient for larger-scale or three-dimensional (3D) computations if existing scat-
tering codes are to be used to fill the A operator block. Other ways to handle this intersection problem exist, such as a variant
of B2 which wraps points on @X back into U, with which we have preliminary success.

We have not discussed the methods we use for the nonlinear eigenvalue problem, due to space constraints. The scheme of
Yuan et al. [49] uses a quadratic eigenvalue problem, and factorizes the scattering matrix of the inclusion at each x, hence
may be faster than our scheme for small systems. However, moving to large-scale systems with more than 104 degrees of
freedom, such a factorization would be impractical compared to an iterative version of our scheme.

Some generalizations of what we present are straightforward, such as multiple inclusions per unit cell, non-simply con-
nected inclusions, or inclusions with corners (using quadrature rules such as [11,25]). There exist regimes, however, that
would require some modification. These include two phase dielectrics one or more of which are connected through the bulk
(sometimes called bicontinuous), and unit cells which are highly skew or have large aspect ratios.

Our new representation for quasi-periodic fields can also be used for scattering calculations from periodic one-dimen-
sional arrays of inclusions in 2D and one or two-dimensional arrays in 3D. Because we rely entirely on the free-space Green’s
function, it should be straightforward to create quasi-periodic solvers from existing scattering codes. We will describe such
solvers at a later date.
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Appendix A. Proof of Theorem 4

Recall the Green’s representation formulae [16, Sec. 3.2]. If u satisfies (D + x2)u = 0 in X, recalling that u� and u�n signify
limits on @X approaching from the inside, and the normal always points outwards from X, then
�SðxÞu�n þDðxÞu� ¼
�u in X

0 in R2 nX

�
ðA:1Þ
The exterior representation has the opposite sign: let u satisfy (D + x2)u = 0 in R2 nX and the Sommerfeld radiation condi-
tion, that is,
@u
@r
� ixu ¼ oðr�1=2Þ; r :¼ jxj ! 1 ðA:2Þ
holds uniformly with respect to direction x/r. Then,
�SðxÞuþn þDðxÞuþ ¼
0 in X

u in R2 nX

�
ðA:3Þ
We will need the following quasi-periodic analogues.

Lemma 9. Let u satisfy (D + x2)u = 0 in X, and X � U, Then for each Bloch phase (a,b),
�SðxÞQP u�n þD
ðxÞ
QP u� ¼

�u in X

0 in U nX

�
ðA:4Þ
Proof. Write GQP using (11) and notice that each term other than (m, n) = (0,0) contributes zero. This is because all points in
U lie outside each closed curve @X �me1 � ne2, and we may apply the second (extinction) case of (A.1) to show that they
have no effect in U. h
Lemma 10. Let u satisfy (D + x2)u = 0 in U nX and quasi-periodicity (6)–(9), and X � U. Then
�SðxÞQP uþn þD
ðxÞ
QP uþ ¼

0 in X

u in U nX

�
ðA:5Þ
Proof. We follow the usual method of proof [16, Thm. 3.3] but with the quasi-periodicity condition playing the role of the
radiation condition. Apply Green’s 2nd identity to the functions u and GQP(x,�) in the domain U nX if x 2X, or the domain
fy 2 U nX :j x� yj > eg if x 2 U nX. In the latter case the limit e ? 0 is taken, and (11) shows that only the (m,n) = (0,0) term
contributes to the limit of the integral over the sphere of radius e. In both cases the boundary integrals contain the term
Z

@U

@GQP

@ny
ðx; yÞuðyÞ � GQPðx; yÞunðyÞ dsy; ðA:6Þ
which vanishes by cancellation on opposing walls, since u is quasi-periodic with phases (a, b), but GQP(x,�) is anti-quasipe-
riodic, i.e. quasi-periodic with phases (a�1, b�1). h

Turning now to Theorem 4, to prove the if part, we show that whenever the operator has a nontrivial nullspace, a Bloch
eigenfunction u may be constructed, i.e. a solution to (2)–(9), that we must take care to show is nontrivial. Let
g = [s; � r] – 0 be a nontrivial density such that AQPg = 0. Immediately we have that the resulting field u given by (15) sat-
isfies (2)–(9). We now define a complementary field over the whole plane minus @X,
v ¼
SðxÞQP rþDðxÞQP s in X

�SðnxÞr�DðnxÞs in R2 nX

(
ðA:7Þ
Suppose u � 0. Then u� ¼ u�n ¼ 0 and by the jump relations for SðnxÞrþDðnxÞs we get v+ = �s and vþn ¼ r. Similarly, since
uþ ¼ uþn ¼ 0 by the jump relations for SðxÞQP rþDðxÞQP s we get v� = �s and v�n ¼ r. It is easy to check that v solves the
(swapped-wavenumber) transmission problem,
ðDþx2Þv ¼ 0 in X ðA:8Þ
ðDþ n2x2Þv ¼ 0 in R2 nX ðA:9Þ
@v
@r
� inxv ¼ oðr�1=2Þ; r !1; uniformly in direction ðA:10Þ

vþ � v� ¼ h ðA:11Þ
vþn � v�n ¼ h0 ðA:12Þ
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with homogeneous boundary discontinuity data h = h
0
= 0. By uniqueness for this problem [16, Thm. 3.40] we get that v � 0

in R2, from which the jump relations back to u imply r = s = 0, which contradicts our assumption of nontrivial density. Thus u
is a Bloch eigenfunction.

To prove the only if part we show that, given the existence of a Bloch eigenfunction, we may exhibit a (nontrivial) density
g such that AQPg = 0. Let w be a Bloch eigenfunction with eigenvalue (x, a, b). Then let v solve (A.8)–(A.12) with the inho-
mogeneous data h = �2wj@X and h

0
= �2wnj@X. (Note that w obeys continuity (4), hence wj@X = w+ = w� and

wnj@X ¼ wþn ¼ w�n ). By [16, Thm. 3.41] we know that a unique solution exists. We now claim that the densities
r ¼ wnj@X þ vþn ðA:13Þ
s ¼ �wj@X � vþ ðA:14Þ
generate precisely the eigenfunction w, i.e. the representation u of (15) obeys u � w in U. We show this by substituting the
densities into (15), then applying (A.1) and (A.3) in X, and Lemma 10 in U nX:
u ¼
SðnxÞwnj@X �DðnxÞwj@X þ S

ðnxÞvþn �DðnxÞvþ in X

SðxÞQP wnj@X �D
ðxÞ
QP wj@X þ S

ðxÞ
QP vþn �D

ðxÞ
QP vþ in U nX

(

¼
w in X

�wþ SðxÞQP vþn �D
ðxÞ
QP vþ in U nX

(

On the remaining term, we use v’s known jumps h and h

0
to get
SðxÞQP vþn �D
ðxÞ
QP vþ ¼ SðxÞQP v�n �D

ðxÞ
QP v� � 2SðxÞQP wnj@X þ 2DðxÞQP wj@X ¼ �2w
where we applied Lemma 9 to the first pair, and Lemma 10 to the second as before. Substituting this above shows that u � w
in U. Since w has zero mismatch, the density vector g:¼[s; � r] satisfies AQPg = 0. Finally, g must be nontrivial since g = 0
would imply u � 0 by (15) which contradicts it being equal to the eigenfunction w.

We close with a couple of remarks about the proof. Barring a sign, v in (A.7) is the extension of u’s representation (15) into
its non-physical regions, a trick originating, in the homogeneous context, with the proof in [16, Thm. 3.41]. Because (15) uses
GQP outside, but G inside, the complementary problem is a nonperiodic transmission problem, which has known existence
and uniqueness. The related analysis of [45] uses GQP both inside and outside. This results in a periodic problem as the com-
plementary problem, and it is not so clear that one can eliminate the possibility of spurious modes.
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